


Network Automation and 
Orchestration



Module 2: Introduction to Salt
Network Automation and Orchestration



Salt

“In Salt, speed isn’t a byproduct, it is a design goal. Salt was created as an 
extremely fast, lightweight communication bus to provide the foundation 
for a remote execution engine. Salt now provides orchestration, 
configuration management, event reactors, cloud provisioning, and more, 
all built around the Salt high-speed communication bus.”

https://docs.saltstack.com/en/getstarted/speed.html

https://docs.saltstack.com/en/getstarted/speed.html


Salt Architecture: typical hub and spoke

Master

Minion Minion Minion...



Salt Architecture: multi-master

Master

Minion Minion Minion...

Master Master...



Salt Architecture

Minion: process or system service managing the machine it is installed on. 
Has the advantage to be executing everything locally: it receives command 
requests, executes locally, then returns the result.

Master: process or system service running on a dedicated machine, 
managing Minions. In typical large setups, one Master can manage around 
35000-40000 Minions. This number is usually hardware limited.



Salt Architecture

The Minion-Master communication is established over two encrypted 
ZeroMQ ports (default 4505 and 4506), using a public-private key pair. The 
Minions listens to command requests over one port (4505) and sends 
executions results over 4506.

When the Minion starts up, it contacts the Master and provides it with its 
public key. If the Master recognizes the key signature, it accepts the 
Minion, otherwise rejects the affiliation.

Once the key has been accepted, the Minion can receive requests. 



Salt Naming Conventions

Opts: the configuration options provided by the user in the Master or 
Minion configuration files. Usually, these refer strictly to the Master / 
Minion services themselves. Example: ipv6: true (whether should 
connect to the Master over IPv6).

Pillar: data introduced by the user, which is used to model automation 
logic, or it represents the data itself. Example: interfaces and their IP 
addresses, list of prefixes in a prefix-list, etc.



Salt Naming Conventions (2)

Grains: data collected dynamically by Salt. They represent attributes of the 
device being managed. Examples: model, vendor, serial number, CPU 
model and architecture, operating system name, etc.

In general, you don’t need to do anything about it, but just be aware of 
their existence.

Grains can be used to model automation logic based on various attributes 
(e.g., deploy specific configuration only on a certain platform), or targeting 
groups of devices having the same characteristics (e.g., execute a 
command on Junos MX960 routers)



Salt Naming Conventions (3)

Grains: can also be provided statically or from external sources, as some 
attributes can’t be necessarily retrieved from the device. Example: device 
role, location (site, city, country, region), etc.

In short:

●Pillar = automation data
●Grains = attributes



Salt in networking

A Salt Minion implies a service running on the machine / system we want 
to manage. On typical network gear however, we can’t install custom 
software.

In 2015, SaltStack has introduced the Proxy Minion, which behaves just like 
the regular Minion, but doesn’t need to be running on the target device - 
instead it connects to the device over the channel or API of choice: HTTP, 
NETCONF, gRPC, SSH, etc.



Salt in networking (2)

Master

Proxy 
Minion

Proxy 
Minion

Proxy 
Minion

...

Network 
Device

Network 
Device

Network 
Device

NETCONF
HTTP
SSH



Salt in networking (3)

Proxy Minions are simple processes able to run anywhere, as long as both 
conditions below are true:

1.Can connect to the Master.
2.Can connect to the network device (via the channel / API of choice - 

SSH / NETCONF / HTTP / gRPC, etc.)

For every network device, we have a Proxy Minion.



Salt in networking (4)

Deployment examples include:

●Running Proxy Minions as system services:
○On a single server
○Distributed over multiple servers

●Docker containers
○E.g., managed by Kubernetes

●Services running in a cloud
○See, for example, salt-cloud

https://docs.saltstack.com/en/latest/topics/cloud/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

